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LETTER TO THE EDITOR 

Anomalous diffusion near the flux lattice melting transition 
in high-T, superconductors 

T Ala-Nissila, E Granatot and S C Ying 
Department of Physics, Brown University, Providence, RI 02912, USA 

Received 27 July 1990 

Abstract. We consider the dissipation arising from the activated motion of a flux 
line lattice in the presence of dilute pinning centres. By regarding this process as 
an effective motion of the pins relative to the flux lattice, we map the problem into 
the diffusion process of a particle interacting with the flux line lattice. We solve this 
problem analytically using a novel microscopic diffusion theory. In particular, we 
show that anomalous behaviour of the linear resistivity is expected at  the flux lattice 
melting, and may show up as a dip in its temperature dependence. 

One of the most important features exhibited by the novel high-T, superconducting 
materials is the appearance of large dissipation due to thermally activated flux line 
motion [ l ,  21. At low temperatures, the resistivity behaves according to the Arrhenius 
form p = poe-Uo/kT, Additionally, for magnetic fields parallel to the crystal axis 
B 11 c ,  and for small values of the current j ,  the activation energy U, = U,(B,T) is 
independent of j [3] leading to a linear resistivity pL, while for larger values of j < j ,  
collective effects of flux pinning lead to a power law behaviour U o ( j )  % ( j , / j ) ' / '  [4], 
where j, is the critical current. Even a more complicated dependence of U, on the 
current is possible in some cases [3 ,5 ,6] .  

The details of this resistive behaviour for j 5 j, as a function of B and T have been 
studied both experimentally [3,7-91 and theoretically [lo-121. In the high-T, materi- 
als, the low-temperature Arrhenius behaviour of the resistivity is believed to be due to 
thermally assisted flux flow (TAFF), where the effective motion of the flux lines is ther- 
mally activated over barriers U, [13]. In the simplest scenario there is a broad resistive 
transition from the TAFF regime to flux flow as a function of j and temperature [1,2]. 
This resistive crossover tra.nsition as a function of temperature has been qualitatively 
explained by diffusion models based on the motion of (almost) independent flux lines 
or bundles in a periodic potential, with a phenomenologically fitted energy barrier 
U, = U,,(B, T )  [ l l ,  121. However, this type of simplified picture of flux motion is 
complicated by several factors, such as collective pinning effects [5,6,14] and strong, 
microscopic pinning [2]. Another important possibility is the existence of various dif- 
ferent phases of the flux lattice in the high-T, materials between H C 1 ( T )  and HC2(T) 
[15-171. In particular, the ground state Abrikosov flux line lattice (FLL) has been pre- 
dicted to  melt into a flux liquid [18,19] at H,,(T), where H C I ( T )  < HCL(T) < H,,(T),  

t On leave from Instituto de Pesquisas Espaciais, 12201 - S I 0  Jose dos Campos, SP B r a d .  
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precluding transition to  the normal state a t  H,,(T).  However, an experimental veri- 
fication of this transition [20] is presumably complicated by the presence of random, 
microscopic pinning centres in these materials, In addition, randomness in pinning has 
been shown [21] to  destroy the true translational long-range order in the FLL, leading 
to  a possible vortex glass phase a t  low temperatures for d 2 3 [16]. In the case of 
very strong microscopic pinning, even the vortex glass-to-liquid phase transition could 
be destroyed, leading to  a simple thermal depinning of the flux lines [2]. However, if 
disorder in the pinning centres is small enough and the flux lines are very rigid, a FLL 
can still exist up to a disorder-dependent correlation length. As a consequence, there 
has been no general agreement on the interpretation of some experiments which can 
be interpreted either as evidence of FLL melting or simply as a thermal depinning of 
the flux lattice. In the presence of such distinct scenarios, it would be of interest to  
determine possible effects on transport properties of the flux lattice melting under the 
assumption that  the pinning centres do not completely destroy the Abrikosov melting 
transit ion. 

In this letter, we shall demonstrate that  the nature of the low-temperature flux 
phase and the Abrikosov melting have important consequences to  the behaviour of 
the linear resistivity contribution pL arising from the pinning of the flux lines by 
macroscopic defects. Namely, by considering a dilute limit of pinning centres we map 
the calculation of p L  to  the diffusion of independent pins in an inhomogenous medium 
[14]. By using a recently developed microscopic theory of diffusion [22] we shall demon- 
strate that  in the case of flux lattice melting, pL exhibits anomalous behaviour a t  the 
transition in the form of a downward dip in its temperature dependence. 

In the TAFF regime, the motion of the flux lines is assumed to  be thermally acti- 
vated over pinning barriers U,(B, T ) .  Thus, the contribution to  linear resistivity p L  
arising from this process is proportional to the diffusion of the flux lines [2]. One of 
the theoretical approaches to  this problem uses a Langevin equation to  describe the 
flux motion in the presence of random driving forces [23]. This model of flux line 
diffusion has been recently applied to the case of weak collective pinning, in which 
(almost) independent flux lines are moving in an effective periodic potential associ- 
ated with the pins [12]. The corresponding one-dimensional diffusion equation for the 
flux lines has been solved using multiscale analysis, yielding a simple expression for 
p L .  However, if we consider the case of quenched, dilute macroscopic pinning, this 
diffusive motion can also be described as arising from the motion of the pins relative 
to  the FLL [14]. Thus, pL becomes proportional to  the tracer diffusion coefficient D, 
associated with single pins interacting with the FLL. We believe that this approxima- 
tion is more realistic, since with this mapping we can include the collective effects of 
the underlying FLL, as we shall describe below. To take this into acount, we shall 
consider a recently developed microscopic theory of diffusion of a particle coupled to  
the vibrations of an inhomogeneous medium [22]. For simplicity, we consider the case 
in which the magnetic field is parallel t o  the c axis of these highly anisotropic materi- 
als, with the vortex cores preferentially aligned along the field, and consider only the 
motion in the plane perpendicular to this axis. For a two-dimensional square lattice, 
the theory of diffusion in the high-friction limit leads to  an analytic expression for 
diffusion coefficient as [22] 

where a GZ d m  is the linear size of the unit cell, in denotes the effective 'mass' of the 
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diffusing particle and 2 = Je-pvA(r) d r  is the partition function. The two important 
quantities in (2) are the periodic adiabatic substrate potential V*(T) seen by the 
diffusing particle, and the zero-frequency limit of the friction tensor q(r;  w = 0) which 
contains the microscopic details of the coupling to  the medium. Within continuum 
elasticity theory, q(r; w = 0) is independent of temperature, and assuming a periodic 
Abrikosov lattice with V*(T) = Ueff[cosG1 * r  + c o s G z . r ]  (with G ,  = (2a/a,O), 
G, = (0 ,2a/a))  and a spatially constant qc(w = 0), (1) gives the result 

where po is a constant and Io is a modified Bessel function of order zero. This result 
reproduces formally the solution of the one-dimensional diffusion problem of the flux 
lines [ l l ,  12,231. Considering the diffusion barrier We, in (2) as phenomenological, we 
can immediately reproduce the results for resistivity obtained by Tinkham [ll] and 
Inui et a1 [12] just  by fitting We, . Although (2) then displays the expected Arrhenius 
behaviour a t  low temperatures, it can be considered to  be an effective fitting form 
a t  best, since a true microscopic understanding of the associated diffusion process, 
and the behaviour of the energy barrier U,, is lacking. Thus, instead of assuming 
the validity of (2) over the whole region of the resistive transition, we are going to  
concentrate on the case where the diffusion theory is most likely to  be correct, namely 
before the crossover from the diffusive TAFF to the flux flow regime. This allows us to  
use the important advantage given us by our mapping to  examine the intrinsic effects 
associated with the vortex lattice in detail, as we shall show below. 

The microscopic expression (1) has important consequences t o  the motion of the 
flux lines near the melting transition of the FLL. To calculate the behaviour of p L  
near the melting transition, we must consider the coupling of the pins to  a realistic, 
triangular FLL in more detail. Although an analytic solution of the type (2) has 
not been found for triangular symmetry, i t  can be shown that D, is still inversely 
proportional to  the magnitude of the friction tensor q ( r ; w  = 0). In the harmonic 
approximation, the Fourier components of a spatial GYP component of the friction 
tensor can be written ast [22] 

x (4  + G),(q + G), (q  + GOp(4 + G’)6 (3) 

where S ( q ; w  = 0) is the zero-frequency limit of the dynamic structure function, 
W ( q )  denotes the Fourier coefficients of the pair interaction potential with V’(T) = 
ER, W ( T  - R,) ,  G and G’ denote reciprocal lattice vectors, and summation goes 
over spatial indices p6. Near a structural phase transition, such as a FLL melting, 
S ( q ; w  = 0) will display anomalous behaviour which depends on the nature of the 
transition. Within a third long-time approximation to  structural phase tra.nsitions 
[24], S(q; w = 0) oc x 2 ( q ) ,  where x ( q )  is the static susceptibility. Thus,  in the case of 
a continuous transition ,y(qo) M t -7 ,  i.e. the susceptibility diverges near t = T-T, = 0 

t Although we are considering single particle diffusion here, this expression for the friction tensor takes 
into account collective effects of the vortex lattice via S(q; w = 0 ) .  A somewhat similar expression 
for the random component of the velocity of flux lines in the case of weak, collective pinning has been 
recently derived by Vinokur et  al  [14]. 
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a t  a value of qo corresponding to  the commensurate wavevector of the triangular FLL.  
Neglecting the contribution from the other smooth functions of q in (3),  and using an 
isotropic mean-field scaling form for x (q )  c( l / (q  - qo)2  + tr  gives r](G, G ’ ; w  = 0 )  0: 
t-7 which implies 

pL x D, x tr (4) 

for t + 0 a t  d = 2.  Thus, we have the following novel prediction: due to  a diverging 
friction tensor, the linear resistivity component associated with macroscopic pinning 
vanishes at T,. A more careful calculation using a full scaling form of the dynamic 
structure function gives D, x t(z+2-d-q)/(2-”)r [25], where r ]  and t are the correlation 
function and dynamic critical exponents, respectivelyt. We note that the mean-field 
limit a t  d = 2 where z = 2, r]  = 0 captures back the result (4). Physically, a reduction 
in the diffusion constant is expected since there should be an increase in the effective 
pinning due to  a softening of the flux lattice by thermal fluctuations a t  the transition 

Recently, a qualitatively similar prediction about the behaviour of the linear re- 
sistivity component pL a t  a vortex glass transition of a FLL has been presented 
by Koch et a1 [26] using simple scaling arguments. In their theory, they obtain 
PL M t v ( z + 2 - d )  M t(f+2-d)/(2-”)r above T,. In the vortex glass phase below T,, 
pL E 0 ,  in contrast to  the weakly pinned FLL, for which we assume pL to display acti- 
vated behaviour. Their result has been derived by assuming that the relevant length 
and time scales a t  the transition are controlled by the coherence length e and [ * ,  
respectively. In the case we are considering here, however, the resistivity near T, is 
assumed to  be controlled by the correlation function of the FLL in the friction tensor, 
leading to  a different result. For 17 = 0,  our result coincides with that of Koch et al. 
However, we must emphasize the different physical regime that we are working on: we 
are neglecting the collective pinning effects which lead to  the vortex glass phase, and 
we are assuming that  p L  is finite bolh above and below the melting transition. 

The behaviour of pL near the FLL melting crucially depends on the nature of the 
melting transition. In case the true long-range order of the FLL is destroyed by random 
pinning, the diverging correlation length is limited by the distance over which short- 
range order remains and we expect the transition will cause a dip in pL at  T,, instead 
of making it vanish. The same situation also applies, if the FLL melting is a first-order 
transition. The stronger the first-order nature of the melting is, the weaker the dip 
exhibited in pL. Above T,, the behaviour of the resistivity is complicated by pinning. 
For weak, short-range pinning it has recently been shown [14] that  the TAFF regime 
may extend up to  a temperature Tk > T,, beyond which it crosses over to  the flux 
flow regime. For stronger pinning, the flux flow regime may also start  a t  around T,. 
In the latter case, our prediction only holds for T 5 T,. 

So far, the available experimental results of resistivity measurements in an applied 
magnetic field have not shown the behaviour we have discussed in this work. This is 
probably due to  the difficulties of performing resistivity measurements in the ohmic 
regime. The  requirement of extremely small voltages may be diffult to  achieve near 
transition and non-linear effects probably dominate in most experiments. Alternately, 
in some high-T, materials microscopic pinning may be strong enough to  destroy the 
melting transition, as we have discussed above. However, in granular superconducting 

PI. 

t In some cases the true singularity resulting from the divergence of S(q;  w = 0) may be considerably 
weaker than the predictions obtained here [27]. 
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materials, as well as in some Josephson junction arrays, it may be possible to control 
both resistivity and pinning barriers in order to observe a melting transition of the 
flux lattice. We hope that the present work will motivate further experimental studies 
in these directions. 

We wish to  thank J M Kosterlitz, R Pelcovits and G Xiao for useful discussions. This 
work has been supported by an ONR grant (TA-N and SCY) and Conselho Nacional 
de Desenvolvimento Cientifico e Tecnoldgico -CNPq (Brazil) (EG). 
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